Exploiting the Link Between Learning Theory and
Algorithmic Discrete Mathematics

Don Hush
CIC-3, MS B265
dhush@lanl.gov

February 1, 2000

A Proposal to the Los Alamos Applied Mathematical Sciences Program

1 Introduction

Many problems of national concern are not easily solved using a first principles model.
Relevant examples include Information Security (e.g. computer network intrusion
detection, or automatic document classification), and Intelligent Surveillance (e.g. the
detection and characterization of a specific phenomenon using remote sensor data).
In such cases it has become popular to use the computer to learn the correct model
based on exzamples of its behavior. The notion of “learning from examples” has an
intuitive appeal that stems from the analogy to the human learning experience. This
analogy suggests that such a task can be easily accomplished with a small number of
examples. But such analogies are misleading in that the learning problem appears to
be more difficult for computers. This brings into question fundamental issues related
to the tractability and efficiency of computer learning, and its potential for success in
the real world. We propose a rigorous study of these issues using conventional models
of computing.

Machine Learning (ML) is the science of building predictors from randomly gen-
erated data while accounting for the computational complexity of the learning algo-
rithm and the predictor’s performance on future data. The seemingly unrelated field
of Algorithmic Discrete Mathematics (ADM) is concerned with the design of efficient
algorithms for discrete mathematical problems such as Traveling Salesman, Matching,
Graph Coloring, Partitioning, etc. Many of these ADM problems are intractable in

1

the worst case setting (assuming P # N P), but some appear to have a large fraction
of instances that can be solved efficiently. This has motivated a probabilistic study
of these problems. For example Frieze and Reed [5] have constructed a polynomial-
time algorithm that with high probability solves the Hamiltonian cycle problem on
random graphs with edge probability 1/2. They also show that a certain branch and
bound algorithm for the Knapsack problem takes super-polynomial time with high
probability. For recent surveys of this field see Alon, et.al. [1] and Habib, et.al. [6].

The incorporation of probability into the ADM framework creates a similarity
between the development and analysis of algorithms for Machine Learning and Al-
gorithmic Discrete Mathematics which we expand upon below. Historically the ML
community has placed more emphasis on predictor performance than computational
complexity and thus has produced powerful probabilistic tools for bounding the pre-
diction error. Although many of these same probabilistic tools can be used to analyze
the computational complexity of learning algorithms, their application in this domain
is still quite primitive. In contrast, the strong emphasis on computational complexity
in the ADM community has resulted in a sophisticated use of the probabilistic method
for algorithm analysis which should be useful in advancing the computational com-
plexity component of ML. At the same time the probabilistic method employed by
the ADM community could be significantly enriched by incorporating the advanced
probabilistic tools from ML. Thus, it appears that ML and ADM can benefit from
each other’s strengths.

Because of its de-emphasis on computational complexity, ML has fallen short of
its goal of completely addressing the concerns of the practitioner. In this proposal
we revive the emphasis on computational complexity in an attempt to remedy this
situation. Likewise we propose to advance the state-of-the art in ADM by applying
advanced probabilistic tools from ML to both the analysis of approximate solutions
and algorithm complexity.

2 A Simple Connection Between ML and ADM

Here we demonstrate a simple connection between ML and ADM by showing that
there is an isomorphism between the landmark problems of linear classifier design
in ML and satisfiability in ADM. Having done so allows the exchange of complexity
and performance results between the ML and ADM communities. First we introduce
some terminology.

A linear threshold function (LTF) is a binary function of the form y = H(w-z+b),
with parameters w and b, where H is the Heaviside function defined by H(z) = 0
for 2 < 0 and H(z) = 1 otherwise. For simplicity we restrict the components of z

2

and w to be binary {—1,1} and b to be integral. In the ML framework the LTF
plays the role of a linear classifier for a two-class pattern recognition problem where
x is a pattern vector, and {w,b} are the parameters of the classifier. In the ADM
framework the LTF plays the role of a logical expression, where the components of x
are the literals and {w, b} are the parameters of the logic function. Now we define the
ML problem LT-LOADING and the ADM problem LT-k-SAT and show that they
are isomorphic.

LT-k-SAT: Given k LTFs y = H(w; - © +b;), j = 1, ...,k with parameters w;,b;,
does there exist an assignment for x for which y =1 for all j?

Note that this problem can be formulated as a satisfiability problem for the con-
junction of LTFs,

H(wy-z+b)) ANH(wg-x 4+ bo) Ao AN H(wy, - x + by,)

LT-LOADING: Given a set {z;,y;},7 = 1,2,...,k does there exist an LTF with
parameters {w, b} such that all k points are correctly classified, that is y; = H(w-x;+b)
for all ¢

Note that this problem can be formulated as a satisfiability problem for the
boolean formula

H((2yy — 1)(w -z + b)) NH((2ys — 1)(w - 22 + b)) Aeeo. AH((2y, — 1) (w -z + 1))
Letting #; = (2y; — 1)x; and b; = (2y; — 1)b this becomes
H(w-#y+b)ANH(w-dy+b) A ... NH(w - &+ b)

so that mapping #; to w;, b to b; and w to x completes the isomorphism between
LT-LOADING and LT-£-SAT.

This mapping also provides isomorphisms for both the search and optimization
versions of these problems. In the search problem we ask for a solution vector for
the yes instances of the decision problem. In the optimization problem we ask for a
solution vector that maximizes the number of LTF's satisfied in the conjunction. In
ML the search and optimization problems correspond to the landmark problem of
linear classifier design for separable and non-separable data respectively.

3 Algorithm Development Framework

The linear classifier design problem just described is NP-Complete [9], meaning that
there are instances that cannot be solved in polynomial time (assuming P # NP).

3

However there may be variations that admit polynomial-time solutions. For example
hard instances may be rare, so that by placing a distribution on the space of instances
we may be able to efficiently produce exact solutions with high probability. Note that
in ML the distribution is determined by nature whereas in ADM it is specified by
the analyst in a manner that is consistent with the problem domain. Alternatively
this problem may lend itself to efficient solutions through the use of randomized al-
gorithms (i.e. it may live in RP). Randomized algorithms and randomized instances
are two different ways of introducing randomization that may also be considered si-
multaneously. On the other hand it may be that relaxing the requirement of an exact
solution may make the problem tractable. For example it is known that relaxing the
binary constraints on the LTF parameters leads to a tractable problem (linear pro-
gramming) when the data is linearly separable [9]. By mapping this solution to one
with binary coefficients we obtain an approximate solution. Thus we have converted
an NP-Complete problem to an approximation that can be solved in O(dk(d + k)*)
time where k is the number of pattern vectors and d is their dimension. In addi-
tion, there may be instances for which an approximate solution cannot be achieved
in polynomial time leading us to consider a randomized treatment of approximate
solutions.

A taxonomy of the various scientific regimes discussed above is illustrated in Fig-
ure 1. We would like to use this taxonomy to identify problems where the probabilistic
tools for bounding performance from ML can be applied to ADM, and the probabilis-
tic methods of algorithm analysis from ADM can be applied to ML. To do so will
require the development of a formal model for individual nodes in this taxonomy. One
example is Valiant’s Probably Approximately Correct (PAC) model of ML [10] which
requires that the computational complexity be controlled as a function the accuracy
of approximation and the probability of encountering a non-representative instance.

4 Proposed Work

We have described a general framework for exploiting the link between ML and ADM.
We now describe two specific examples of problems that we will investigate.

1. Linear classifier design with nonseparable data is known to be NP-Hard, but
may be tractable under the appropriate distributional assumptions. For exam-
ple, Bylander has positive results for on-line classification error in terms of a
measure of separability of the data [3, 4]. We propose to combine these results
with techniques from ADM to obtain an efficient learning algorithm with a
well-defined stopping criterion and good performance. In doing so we will have

Computational

Problem
Exact Approximate
&l ution &)I Ution
Deterministic Random Deterministic Random
Randomized Randomized Randomized Randomized
Instances Algorithms Instances Algorithms

Figure 1: Taxonomy of regimes for the study of ADM

resolved a landmark problem in Machine Learning and produced a computa-
tionally effective algorithm for use by the practitioner.

2. ADM often provides positive results for the average run-time, but probabilis-
tic bounds on run-time are rare largely because the corresponding algorithms
are not amenable to existing concentration of measure theory. We propose to
remedy this situation by further investigating general concentration bounds like
those in Rhee and Talagrand [8], Boucheron, et.al. [2], and Hush, et.al. [7]. In
addition we propose to investigate concentration bounds for specific problems
in ADM.

5 Funding Request

We request the standard funding level of $100K per year for four years.

References

[1] Alon, N., Spencer, J. H., and Erdés, P., The Probabilistic Method, John Wiley,
New York, 1992.

[2] Boucheron, S., Lugosi, G., and Massart, P., A sharp inequality with applications,
preprint, 1999.

[3] Bylander, T., Polynomial learnability of linear threshold approximations, Pro-
ceedings of the Sizth Annual ACM Conference on Computational Learning(1993),
297-302

[4] Bylander, T., Learning noisy linear threshold functions, Preprint (1998).

[5] Frieze, A. M. and Reed, B., Probabilistic Analysis of Algorithms, Probabilis-
tic Methods for Algorithmic Discrete Mathematics Habib, M., McDiarmid, C.,
Ramirez-Alfonsin, J., Reed, B., Eds., pp. 36-92, Springer-Verlag, Berlin, 1998.

(6] Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B., Eds., Probabilistic
Methods for Algorithmic Discrete Mathematics Springer-Verlag, Berlin, 1998.

[7] Hush, D., Scovel, C., A new proof of concentration of Rademacher statistics,
submitted to Annals of Probability, 1999.

[8] Rhee, W. T., and Talagrand, M., A sharp deviation for the stochastic travelling
salesman problem, Ann. Probab 17(1989), 1-8.

9] Siu, K.-Y., Roychowdhury, V., and Kailath, T., Discrete Neural Computation:
A Theoretical Foundation, Prentice—Hall, Englewood Cliffs, NJ, 1995.

[10] Valiant, L.G., A theory of the learnable, Communications of the Association for
Computing Machinery 27:11(1984), 1134-1142.

